Construction of polymer-protein bioconjugates with varying chain topologies: polymer molecular weight and steric hindrance effects.

نویسندگان

  • Xuejuan Wan
  • Guoying Zhang
  • Zhishen Ge
  • Ravin Narain
  • Shiyong Liu
چکیده

We report on the fabrication of well-defined polymer-protein bioconjugates with varying chain architectures, including star polymers, star block copolymers, and heteroarm star copolymers through the specific noncovalent interaction between avidin and biotinylated synthetic polymer precursors. Homopolymer and diblock precursors site-specifically labeled with a single biotin moiety at the chain terminal, chain middle, or diblock junction point were synthesized by a combination of atom-transfer radical polymerization (ATRP) and click reactions. By taking advantage of molecular recognition between avidin and biotin moieties, supramolecular star polymers, star block copolymers, and heteroarm star copolymers were successfully fabricated. This specific binding process was also assessed by using the diffraction optic technology (DOT) technique. We further investigated the effects of polymer molecular weights, location of biotin functionality within the polymer chain, and polymer chain conformations, that is, steric hindrance effects, on the binding numbers of biotinylated polymer chains per avidin within the polymer-protein bioconjugates, which were determined by the standard avidin/2-(4-hydroxyazobenzene)benzoic acid (HABA) assay. The binding numbers vary in the range of 1.9-3.3, depending on the molecular weights, locations of biotin functionality within synthetic polymer precursors, and polymer chain conformations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent developments in atom transfer radical polymerization initiators for development of polymer-protein bioconjugates

Article info: Received: 23 January 2013 Accepted: 5 February 2013 ABSTRACT One of the major challenges in modern synthetic polymer chemistry is to synthesize end defined polymers of different end functionality with predetermined uniform molecular weight. End functionalized polymers/copolymers basically in block and grafting form are having several potential applications in biomedical areas in t...

متن کامل

Influence of polymer architectures on diffusion in unentangled polymer melts.

Recent simulations have indicated that the thermodynamic properties and the glassy dynamics of polymer melts are strongly influenced by the average molecular shape, as quantified by the radius of gyration tensor of the polymer molecules, and that the average molecular shape can be tuned by varying the molecular topology (e.g., ring, star, linear chain, etc.). In the present work, we investigate...

متن کامل

Dyes with Segmental Mobility: Molecular Rotors

Molecular rotors are fluorescent molecules that are characterized by the ability to form twisted states through the rotation of one segment of the structure with respect to the rest of the molecule. Intramolecular rotation changes the groundstate and excited-state energies, and molecular rotors deexcite from the twisted state either without photon emission or with a different wavelength than fr...

متن کامل

Effect of Substituent on Titanocene/MMAO Catalyst for Ethylene/1-Hexene Copolymerization

Copolymerization of ethylene with 1-hexene was carried out using two ansa-fluorenyl titanium derivative complexes. The substituent effect on the catalytic activity, monomer reactivity ratio and polymer property was investigated. It was found that the presence of t-Bu groups on fluorenyl ring exhibited remarkable catalytic activity and produced polymer with high molecular weight. However, these ...

متن کامل

Mechanical Properties of CNT-Reinforced Polymer Nano-composites: A Molecular Dynamics Study

Understanding the mechanism underlying the behavior of polymer-based nanocomposites requires investigation at the molecular level. In the current study, an atomistic simulation based on molecular dynamics was performed to characterize the mechanical properties of polycarbonate (PC) nanocomposites reinforced with single-walled armchair carbon nanotubes (SWCNT). The stiffness matrix and elastic p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry, an Asian journal

دوره 6 10  شماره 

صفحات  -

تاریخ انتشار 2011